

Für eine Luftverteilung mit höchsten Anforderungen Glatt - glänzende Frontplattenbeschichtungen Minimale Einbauhöhen durch spezielle Anschlusskästen

Beschreibung, Typübersicht

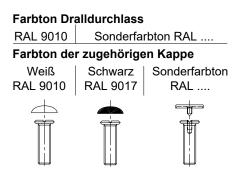
DT Dralldurchlass mit dem bewährten und leistungsstarken progressiv verdrillten Schaufelprofil. Dieses ermöglicht hohe Volumenströme bei geringen Schallleistungen. Das radial- und achssymmetrische Design der Frontplatte gewährleistet einwandfreie Raumströmung.

DT Dralldurchlass für Zuluft und Abluft mit konstanten und variablen Volumenströmen. Die symmetrische Luftverteilung erfolgt über eine quadratische oder runde Frontplatte mit einem radialen, optisch anspruchsvollen Design und dem bewährten und leistungsstarken progressiv verdrillten Schaufelprofil.

DT Dralldurchlässe bewirken unmittelbar am Auslass eine hohe Induktion mit der Raumluft. Dadurch werden die Geschwindigkeit der austretenden Zuluft und die Temperaturdifferenzen sehr schnell abgebaut. Das gilt im Heizfall, als auch bei Raumkühlung mit bis zu -12 K Temperaturunterschied zwischen Raumluft und Zuluft. Werden die im Anwendungsbereich angegebenen Mindest-Volumenströme eingehalten, besteht nie eine Gefahr, dass sich bei Raumkühlung eine Luftströmung von der Decke ablöst. Durch Raumwände und Gegenströmungen wird die Luft in den Aufenthaltsbereich gelenkt. Eine optimale Luftverteilung ist in Räumen mit etwa 2,5 bis 4 m Höhe möglich, sie wird am besten mit bündig in Decken eingebauten Anschlusskästen erreicht.

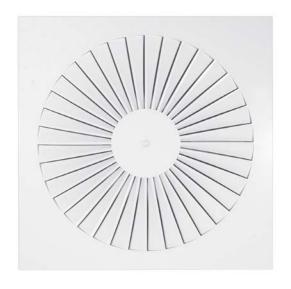
DT Dralldurchlässe sind aus verzinktem Stahlblech. Die Frontplatten erhalten eine unempfindliche, bei hoher Temperatur gesinterte Oberfläche aus Polyester, diese ist äußerst farbtonbeständig und antistatisch. Mit Pulverbeschichtung im Farbton RAL 9010 (Weiß) glatt - glänzend mit 80 bis 90 % Glanzgrad oder in einem anderen RAL-Farbton.

Die **Anschlusskästen** aus verzinktem Stahlblech sind auf die Dralldurchlässe und auf geringe Bauhöhen optimiert und auch pulverbeschichtet lieferbar. Serienmäßig sind ein oder zwei seitliche Anschlussstutzen oder ein Anschluss von oben möglich, ferner Drosselklappen und spezielle Luftleitbleche zur optimalen Luftverteilung mit geringen Strömungsgeräuschen, insbesondere für Zuluft. Eine Volumenstromeinstellung kann ohne Demontage des Dralldurchlasses erfolgen. Mit Bohrungen für Abhängungen und mit verdeckter Zentralbefestigung.


Für geschlossene Deckensysteme, Rasterdecken und für frei hängend.

Typübersicht

Dralldurchlass		DTQ0		DTI	R0
und Anschlusskasten mit	seitlichem	zwei seitlichen	oberem	seitlichem	oberem
		Anschlussstutzen		Anschlus	sstutzen
• ohne Drosselklappe, ohne Luftleitblech	K1	K2	K3	R1	R3
mit Drosselklappe	K1-D	K2-D	K3-D	R1-D	R3-D
mit Luftleitblech	K1-L	K2-L	K3-L	R1-L	R3-L
• mit Drosselklappe, mit Luftleitblech	K1-DL	K2-DL	K3-DL	R1-DL	R3-DL


Zentralbefestigung

mit verdeckten Schrauben M8 x 25:

Datenblatt: Frontplatten

Quadratische Frontplatte DTQ0 600

Runde Frontplatte DTR0 600

Nenngrößen

Nenn- größe	Lochbild Anschluss-	quadr	Q0 atisch	ru	i -	A _{frei}	Anwendung bei Zuluft ab:
	kastengröße	⊿A	⊿F	ØA	ØF	[]	⇒ siehe Seite 16
325	325	323	260	325	285	0,0175	25 m³/h
400	400	398	337	400	360	0,0287	60 m³/h
500	500	498	437	500	460	0,0509	100 m³/h
600	600	595	537	600	560	0,0814	200 m³/h
625	600	623	537	-	-	0,0814	200 m³/h
600	325	595	260	-	-	0,0175	25 m³/h
600	400	595	337	-	-	0,0287	60 m³/h
600	500	595	437	-	-	0,0509	100 m³/h
625	325	623	260	-	-	0,0175	25 m³/h
625	400	623	337	-	_	0,0287	60 m³/h
625	500	623	437	-	_	0,0509	100 m³/h

Sonderausführungen Beschichtung der Front

- Beschichtung der Frontplatten mit Polyester in anderen Farbtönen.
 Serienmäßig sind Farbtöne der Farbsammlung RAL - CLASSIC lieferbar. Eine Beschaffungsmöglichkeit von Sonderfarbtönen - außerhalb der werkseitig vorhandenen - bleibt stets vorbehalten!
- Beschichtung der Anschlusskästen mit Polyester möglich:
 - innen und außen schwarz
 - innen schwarz und außen in Farbtönen²⁾

- Die Nenngrößen entsprechen den Frontplatten.
- \bullet Die Lochbilder entsprechen den Anschlusskastengrößen. Sie bestimmen die freien Querschnitte ${\bf A}_{\rm frei}$ der Dralldurchlässe.
- Frontplatten für Zuluft und Abluft sind identisch.

*) umlaufende Umkantung nur bei DTQ0

A: Frontplattenmaß

F: lichtes Deckenausschnittsmaß

Alle Maße in mm

²⁾zu Farbtönen ⇒ siehe Seite 18

Anschlusskästen für geschlossene Deckensysteme, Rasterdecken und für frei hängend

K1 - mit seitlichem Anschlussstutzen

K2 - mit zwei seitlichen Anschlussstutzen für große
 Volumenströme bei geringster Anschlusskastenhöhe H1

K3 - mit oberem Anschlussstutzen

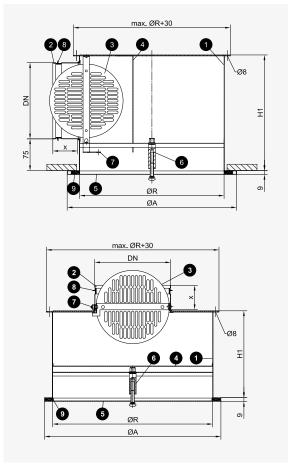
⊄Q+31 0 ⊄Q+31

Anschlusskastenhöhen H1 [mm]

Standardstutzen und Höhen der Anschlusskästen K1 sind fettgedruckt

Anschluss-		/	Ansch	nluss	kaste	n K1	mit A	Ansch	nluss	stutze	en DN	1			K2	mit [ON			K3	mit [ON
kastengröße Lochbild	ØQ	100	125	150	160	180	200	224	250	280	300	315	100	125	150	160	180	200	224	160	200	250
325	260	190	215	240	250	270	290	-	-	-	-	-	190	-	-	-	-	-	-	190	-	-
400	337	-	215	240	250	270	290	314	-	-	-	-	190	215	-	-	-	-	-	-	190	-
500	437	-	-	240	250	270	290	314	340	370	-	-	-	215	240	250	270	-	-	-	190	-
6001)	537	-	-	240	250	270	290	314	340	370	390	405	-	215	240	250	270	290	314	-	-	200
Stutzenlän	ge x	40	40	40	40	40	40	60	60	60	60	60	40	40	40	40	40	40	60	40	40	60

¹⁾ Anschlusskastengröße 600 sind für Dralldurchlässe der Nenngrößen 600 und 625 (Lochbild 600).


Anschlusskästen für geschlossene Deckensysteme, Rasterdecken und für frei hängend

R1 - mit seitlichem Anschlussstutzen

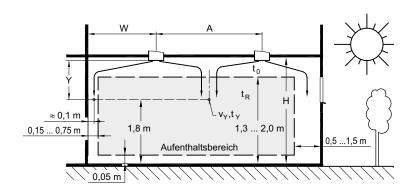
R3 - mit oberem Anschlussstutzen

Frontplattenmaß \emptyset A \Rightarrow siehe Seite 3

Anschlusskastenhöhen H1 [mm]

Standardstutzen und Höhen der Anschlusskästen R1 sind fettgedruckt

Anschluss-				Ansc	hlusska	sten R1	mit An	schluss	stutzen	DN			R	3 mit DI	N
kastengröße Lochbild	ØR	100	125	150	160	180	200	224	250	280	300	315	160	200	250
325	285	190	215	240	250	270	290	-	-	-	-	-	190	-	-
400	360	-	215	240	250	270	290	314	-	-	-	-	-	190	-
500	460	-	-	240	250	270	290	314	340	370	-	-	-	190	-
600	560	-	-	240	250	270	290	314	340	370	390	405	-	-	200
Stutzenlän	ge x	40	40	40	40	40	40	60	60	60	60	60	40	40	60


Stückliste

- 1 Anschlusskasten
- 2 Anschlussstutzen
- 3 Drosselklappe (Option)
- 4 Luftleitblech (Option)
- 5 Dralldurchlass
- 6 Zentralbefestigung

- 7 Stelleinrichtung Drosselklappe
- 8 Lippendichtung (Option)
- 9 Dichtung

Dimensionierung der Raumströmung

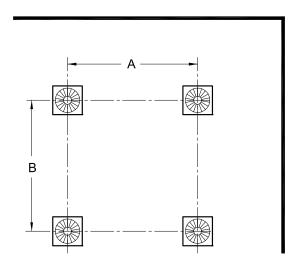
Aufenthaltsbereich nach DIN EN 16798-3

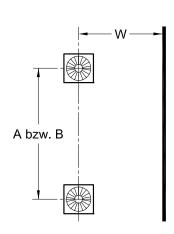
Der Aufenthaltsbereich ist in DIN EN 16798-3 als Raumelement definiert. Hierin sind die Behaglichkeitskriterien zu erfüllen.

Im üblichen Anwendungsbereich beträgt die Höhe 1,30 bis 2,00 m. Standardmäßig sind die zulässigen Strömungsgeschwindigkeiten v_{ν} in 1,80 m Höhe zu bestimmen. Außerhalb des Aufenthaltsbereichs sind höhere Geschwindigkeiten zulässig, so in Abständen von 0,15 m bis 0,75 m von Innen- und Außenwänden und von 0,5 m bis 1,5 m von Außenwänden mit Fenstern oder Türen.

Dimensionierung von DT Dralldurchlässen

Die Strömungsgeschwindigkeit v_{γ} wird lochbildabhängig vom freien Dralldurchlassquerschnitt A_{frei} , vom Volumenstrom V, von der Raumhöhe H, von den orthogonalen Abständen A und B der Dralldurchlässe zueinander und von ihrem Wandabstand W bestimmt. Neben den absoluten Abstandsmaßen A und B ist das Verhältnis A zu B von Bedeutung. Dralldurchlässe in extrem rechteckigen Anordnungen mit A >> B oder B >> A, die auch einreihige Anordnungen sein können, ergeben im Vergleich zu quadratischen und schwach rechteckigen Anordnungen wesentlich andere Strömungsgeschwindigkeiten v_{γ} . Durch entsprechende Anordnungen lassen sich die Strömungsgeschwindigkeiten im Raum somit optimieren; besonders bei einem hohen Luftwechsel kann dies erforderlich sein. Im Aufenthaltsbereich gilt:


DT Dralldurchlässe erreichen

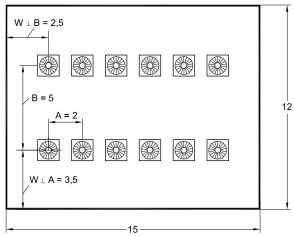

- geringere Strömungsgeschwindigkeiten v., wenn
 - die Abstände A und B wesentlich größer als 2,65 m sind,
 - die Abstände A und B stark unterschiedlich sind und ein Abstand wesentlich kleiner als 2,65 m ist, bzw.
- höhere Strömungsgeschwindigkeiten v., wenn
 - die Abstände A und B gleich, aber kleiner als 2,65 m sind,
 - ein Abstand, A oder B, gleich 2,65 m ist.

Im Wandbereich gilt für DT Dralldurchlässe, dass sich die Strömungsgeschwindigkeiten v_{γ} verringern, wenn die Abstände zunehmen. Dies gilt für die Abstände A bzw. B der Dralldurchlässe parallel zur Wand und auch für deren Abstand W zur Wand.

Diese Zusammenhänge und den Einfluss angrenzender Wände stellen die Nomogramme dar.

Durch unterschiedliche Anordnungen der DT Dralldurchlässe und durch eine entsprechende Größenauswahl lässt sich die Raumströmung optimieren. Oftmals ist dadurch eine Verringerung der Anzahl notwendiger Dralldurchlässe möglich. Es sollte jedoch stets auch auf eine effektive Raumdurchspülung geachtet werden, also auch auf dafür hinreichend große Strömungsgeschwindigkeiten im Raum!

Dimensionierungsbeispiel


Reckteckige Anordnung

Gegeben:

Raummaß 1 15,0 m Raummaß 2 12,0 m Raumhöhe 3,3 m Deckenabstand 1,5 m Luftwechsel 11,1 h⁻¹ Raumvolumen 594 m³ Gesamtvolumenstrom V_{ges} $= 6600 \text{ m}^3/\text{h}$ Raumtemperatur 22 °C Zulufttemperatur 16 °C

Anschlusskasten mit Standardstutzen

DTQ0 - 500 - 500 - K1 - 200 - DL ¹⁾			12	Stück
Volumenstrom je Durchlass	V	=	550	m³/h
Anströmquerschnitt Anschlussstutz	en A _A	=	0,031	m²
Strömungsgeschwindigkeit in $A_{_{\!A}}$	$\mathbf{v}_{_{\mathrm{A}}}$	=	4,9	m/s
$\Delta p_{_t}$, Drosselklappe AUF	$\Delta p_{_{\mathrm{t}}}$	=	27	Pa
L _{wA} , Drosselklappe AUF ⇒ siehe Nomogramm Seite 10	\mathbf{L}_{WA}	=	38	dB(A)
$\Delta p_{_t}$, Drosselklappe ZU	27 Pa · 3,2 ²⁾	=	86	Pa
L _{wa} , Drosselklappe ZU	38 dB(A) + 9,8 ²⁾	=	48	dB(A)

Maße in m

Oktav-Schallleistungspegel $L_{\text{W-Okt}}$, Drosselklappe AUF

f	[Hz]								
$\begin{array}{c} L_{\text{WA}} \text{ [dB(A)]} \\ \Delta L_{\text{4,9 [m/s]}} \\ L_{\text{W-Okt}} \end{array}$	38	38	38	38	38	38	38	38	
$\Delta L_{4,9[m/s]}$	[dB]	+ 5	+ 2	+ 1	- 2	- 4	- 13	- 21	- 24
$L_{\text{W-Okt}}$	[dB]	43	40	39	36	34	25	< 20	< 20

⇒ siehe Nomogramm Seite 10

Anschlusskasten mit anderer Anschlussstutzengröße

DTQ0 - 500 - 500 - K1 - 250 -	- DL ¹⁾			12	Stück
Volumenstrom je Durchlass		V	=	550	m³/h
Anströmquerschnitt Anschlus	sstutzen	$A_{_{\!A}}$	=	0,049	m²
Strömungsgeschwindigkeit in	$A_{_{\!A}}$	V_A	=	3,1	m/s
$\Delta p_{_t}$, Drosselklappe AUF	27 Pa · (),6 ³⁾	=	16	Pa
L _{wa} , Drosselklappe AUF	38 dB(A) - 4	1,8 ³⁾	=	33	dB(A)
$\Delta p_{_t}$, Drosselklappe ZU	27 Pa · 0,6 ³⁾ · 2	2,52)	=	41	Pa
L _{wa} , Drosselklappe ZU	38 dB(A) - 4,8 ³⁾ + 6	3,1 ²⁾	=	39	dB(A)

Oktav-Schallleistungspegel $L_{\text{\tiny W-Okt}}$, Drosselklappe AUF

f	[Hz]	63	125	250	500	1000	2000	4000	8000
L _{wA} [dB(A)]	33	33	33	33	33	33	33	33	
$\Delta L_{3,1[m/s]}$	[dB] [dB]	+ 6	+ 3	+ 1	- 2	- 4	- 16	- 26	- 27
$\mathbf{L}_{\text{W-Okt}}$	[dB]	39	36	34	31	29	< 20	< 20	< 20

⇒ siehe Nomogramm Seite 10

Raumströmung

•		
Abstand A	A =	2,00 m
Abstand B	B =	5,00 m
Abstand W, rechtwinklig zu A	W =	3,50 m
Abstand W, rechtwinklig zu B	W =	2,50 m
Strömungsgeschwindigkeit im Aufenthaltsbereich ⇒ siehe Nomogramm Seite 8	v _Y =	0,15 m/s
Strömungsgeschwindigkeit an der Wand, rechtwinklig zu A ⇒ siehe Nomogramm Seite 9	v _Y =	0,23 m/s
Strömungsgeschwindigkeit an der Wand, rechtwinklig zu B ⇒ siehe Nomogramm Seite 9	v _Y =	0,19 m/s

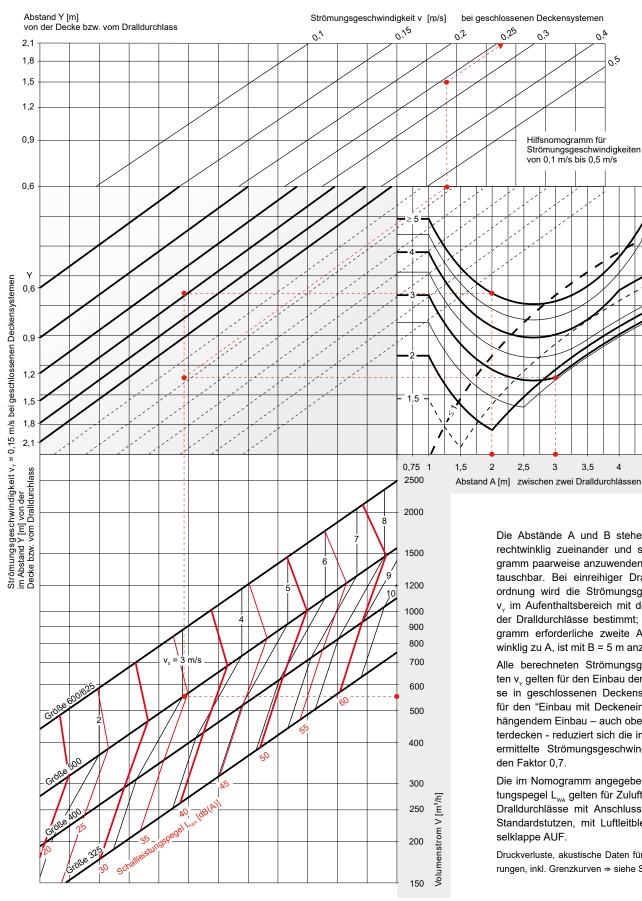
Temperaturverhältnis $\Delta t/\Delta t_0 = 0.043$ Induktion i = 22

⇒ siehe Nomogramm Seite 13

Legende ⇒ siehe Seite 13

¹) Bestellangaben ⇒ siehe Seite 2 bzw.18

Norrekturwerte ⇒ siehe Seite 15
 Korrekturwerte ⇒ siehe Seite 14


4,0

Hilfsnomogramm für Strömungsgeschwindigkeiten von 0,1 m/s bis 0,5 m/s

0,25

DT Dralldurchlass

Raumströmung (Strahlen gegeneinander)

Zusätzlich Mindest-Volumenströme beachten! ⇒ siehe Seite 16

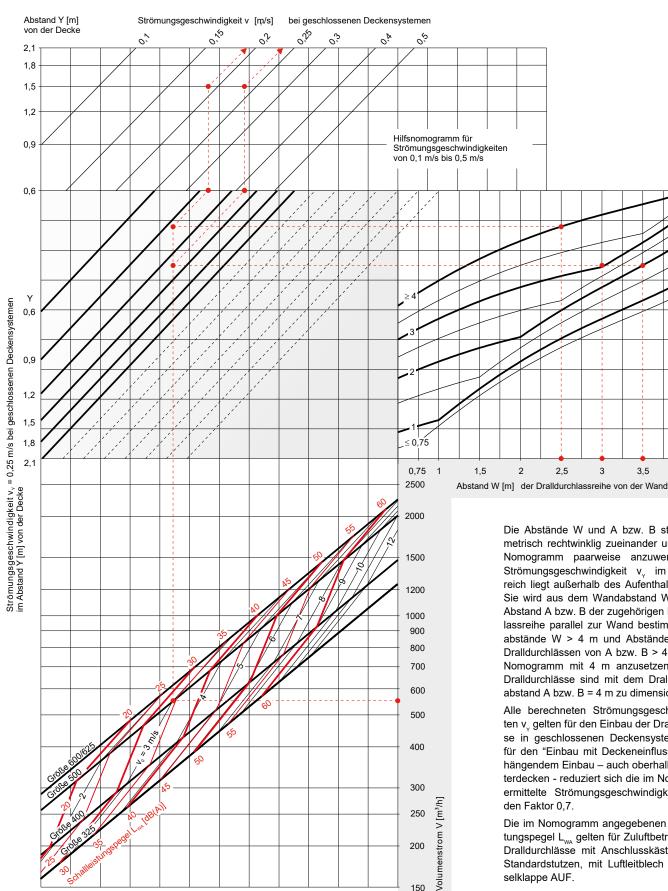
Die Abstände A und B stehen geometrisch rechtwinklig zueinander und sind im Nomogramm paarweise anzuwenden, A und B sind tauschbar. Bei einreihiger Dralldurchlassanordnung wird die Strömungsgeschwindigkeit der Dralldurchlässe bestimmt; der im Nomogramm erforderliche zweite Abstand, rechtwinklig zu A, ist mit B = 5 m anzusetzen.

3

3,5

4,5

كُ ك Abstand B [m] zwischen zwei Dralldurchlässen


Alle berechneten Strömungsgeschwindigkeiten v, gelten für den Einbau der Dralldurchlässe in geschlossenen Deckensystemen, also für den "Einbau mit Deckeneinfluss". Bei frei hängendem Einbau - auch oberhalb von Rasterdecken - reduziert sich die im Nomogramm ermittelte Strömungsgeschwindigkeit v, um den Faktor 0,7.

Die im Nomogramm angegebenen Schallleistungspegel $L_{_{WA}}$ gelten für Zuluftbetrieb der DT Dralldurchlässe mit Anschlusskästen K1 mit Standardstutzen, mit Luftleitblech und Drosselklappe AUF.

Druckverluste, akustische Daten für andere Ausführungen, inkl. Grenzkurven ⇒ siehe Seiten 10 bis 12.

Raumströmung (Strahlen gegen eine Wand)

Zusätzlich Mindest-Volumenströme beachten! ⇒ siehe Seite 16

Die Abstände W und A bzw. B stehen geometrisch rechtwinklig zueinander und sind im Nomogramm paarweise anzuwenden. Die Strömungsgeschwindigkeit v, im Wandbereich liegt außerhalb des Aufenthaltsbereichs. Sie wird aus dem Wandabstand W und dem Abstand A bzw. B der zugehörigen Dralldurchlassreihe parallel zur Wand bestimmt. Wandabstände W > 4 m und Abstände zwischen Dralldurchlässen von A bzw. B > 4 m sind im Nomogramm mit 4 m anzusetzen. Einzelne Dralldurchlässe sind mit dem Dralldurchlassabstand A bzw. B = 4 m zu dimensionieren.

3

3,5

2,5

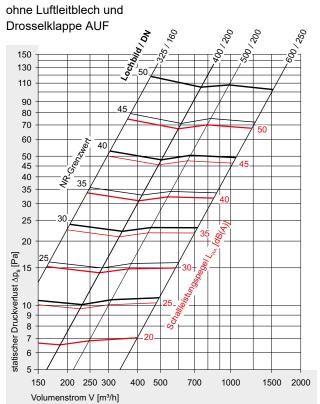
≤ 0,75

Abstand A bzw. B [m] zwischen den Dralldurchlässen rechtwinklig zum Wandabstand W

Alle berechneten Strömungsgeschwindigkeiten v, gelten für den Einbau der Dralldurchlässe in geschlossenen Deckensystemen, also für den "Einbau mit Deckeneinfluss". Bei frei hängendem Einbau – auch oberhalb von Rasterdecken - reduziert sich die im Nomogramm ermittelte Strömungsgeschwindigkeit v, um den Faktor 0,7.

Die im Nomogramm angegebenen Schallleistungspegel L_{wa} gelten für Zuluftbetrieb der DT Dralldurchlässe mit Anschlusskästen K1 mit Standardstutzen, mit Luftleitblech und Drosselklappe AUF.

Druckverluste, akustische Daten für andere Ausführungen, inkl. Grenzkurven ⇒ siehe Seiten 10 bis 12.



mit Luftleitblech und

Druckverlust, Schallleistungspegel, NR-Bewertung, relative Schallleistungspegel

Zuluft: DTQ0 mit Anschlusskasten K1-DL

Abluft: DTQ0 mit Anschlusskasten K1-D

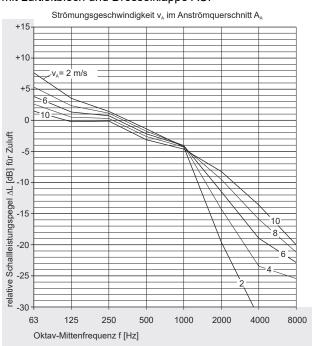
Zusätzlich Mindest-Volumenströme beachten!

⇒ siehe Seite 16

200 250 300

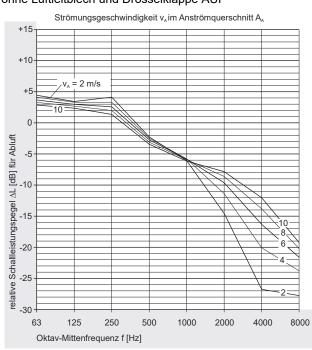
Volumenstrom V [m³/h]

Korrekturen für andere Anschlussstutzengrößen und für Drosselklappe ZU \Rightarrow siehe Seiten 14 und 15.


Zuluft: DTQ0 mit Anschlusskasten K1-DL

500

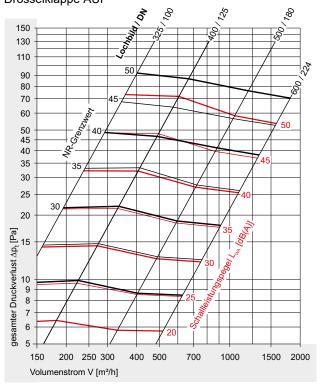
1000


1500 2000

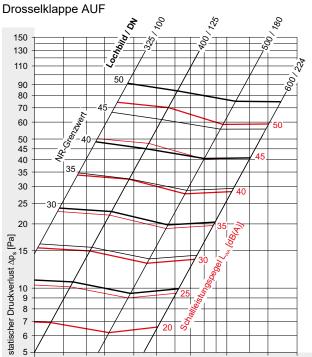
mit Luftleitblech und Drosselklappe AUF

Abluft: DTQ0 mit Anschlusskasten K1-D

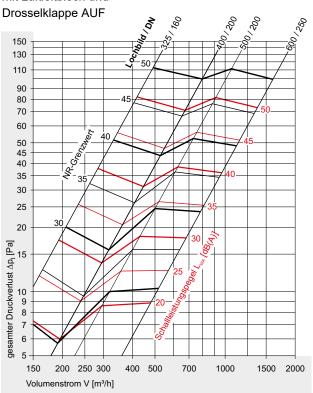
ohne Luftleitblech und Drosselklappe AUF



Druckverlust, Schallleistungspegel, NR-Bewertung


Zuluft: DTQ0 mit Anschlusskasten K2-DL

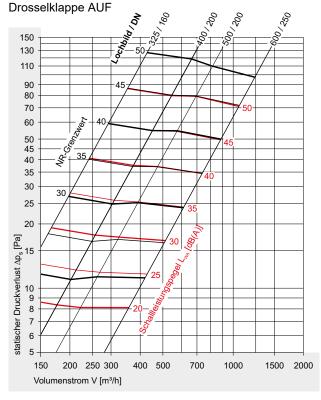
mit Luftleitblech und Drosselklappe AUF


Abluft: DTQ0 mit Anschlusskasten K2-D

ohne Luftleitblech und

Zuluft: DTQ0 mit Anschlusskasten K3-DL

mit Luftleitblech und


Abluft: DTQ0 mit Anschlusskasten K3-D

400

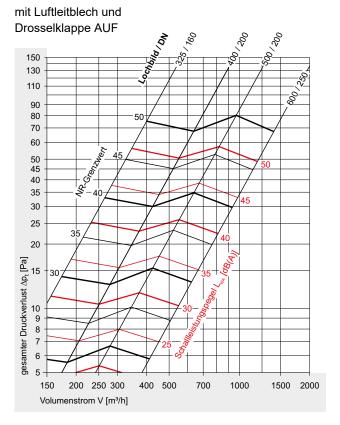
ohne Luftleitblech und

200 250 300

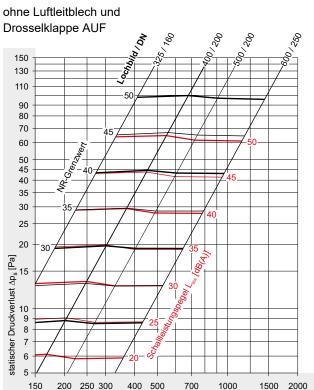
Volumenstrom V [m³/h]

Zusätzlich **Mindest-Volumenströme beachten!** ⇒ siehe Seite 16

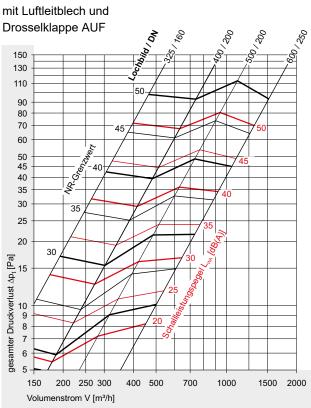
Korrekturen für andere Anschlussstutzengrößen und für Drosselklappe ZU ⇒ siehe Seiten 14, 15 und 16. Relative Schallleistungspegel ΔL für Anschlusskästen K2 und K3 ⇒ siehe WILDEBOER - Dimensionierungssoftware.


2000

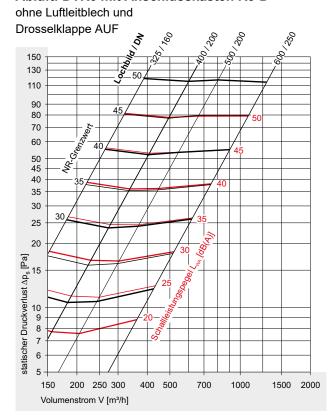
1500



Druckverlust, Schallleistungspegel, NR-Bewertung


Zuluft: DTR0 mit Anschlusskasten R1-DL

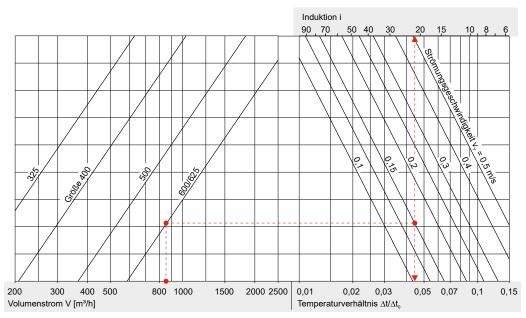
Abluft: DTR0 mit Anschlusskasten R1-D



Zuluft: DTR0 mit Anschlusskasten R3-DL

Abluft: DTR0 mit Anschlusskasten R3-D

Volumenstrom V [m³/h]


Zusätzlich Mindest-Volumenströme beachten! ⇒ siehe Seite 16

Korrekturen für andere Anschlussstutzengrößen und für Drosselklappe ZU ⇒ siehe Seiten 14, 15 und 16. Relative Schallleistungspegel ΔL für Anschlusskästen R1 und R3 ⇒ siehe WILDEBOER - Dimensionierungssoftware.

Temperaturverhältnis, Induktion, Legende

Temperaturverhältnis, Induktion

Beispiel (⇒ siehe Seite 7)

DTQ0 - 500 - 500 - K1 - 200 - DL

Zuluft-Volumenstrom	V	550	m³/h
Strömungsgeschwindigkeit	$V_{_{\mathrm{Y}}}$	0,15	m/s
Raumtemperatur	$t_{_{\rm R}}$	22	°C
Zulufttemperatur	t _o	16	°C
Temperaturverhältnis	$\Delta t / \Delta t_{_{0}}$	0,043	

Temperatur $t_v = 0.043 \cdot (16 - 22) + 22 = 21.7 \, ^{\circ}\text{C}$

Induktion i 22

Sekundärvolumenstrom V_s 22 · 550 m³/h = 12100 m³/h

Legende

A_{frei}	[m²]	freier Querschnitt Dralldurchlass	t _R	[°C]	Raumtemperatur
DN	[mm]	Anschlussstutzengröße	$\Delta t_{_{0}}$	[K]	Temperaturdifferenz; $\Delta t_0 = t_0 - t_R$
$A_{_{A}}$	[m²]	Anströmquerschnitt $A_A = (DN [m])^2 \cdot \pi/4$	$\Delta t/\Delta t_{_{0}}$		Temperaturverhältnis
V	[m³/h]	Volumenstrom	i		Induktion
$V_{\rm ges.}$	[m³/h]	Gesamtvolumenstrom	V_s	[m³/h]	Sekundärvolumenstrom; $V_s = i \cdot V$
v _o	[m/s]	Strömungsgeschwindigkeit in A _{frei}	$\Delta \textbf{p}_{t}$	[Pa]	gesamter Druckverlust
		$v_o = V / (3600 \cdot A_{frei})$	$\Delta \rm p_{\rm s}$	[Pa]	statischer Druckverlust
V_A	[m/s]	Strömungsgeschwindigkeit in A _A	L_{p}	[dB]	Schalldruckpegel
		$V_A = V / (3600 \cdot A_A)$	$L_{_{pA}}$	[dB(A)]	A-bewerteter Schalldruckpegel
$V_{_{Y}}$	[m/s]	Strömungsgeschwindigkeit nach dem	\mathbf{L}_{w}	[dB]	Schallleistungspegel
		Strahlweg	$\mathbf{L}_{\scriptscriptstyle{WA}}$	[dB(A)]	A-bewerteter Schallleistungspegel
A, B	[m]	Abstand zwischen zwei Durchlässen	$\mathbf{L}_{\text{W-Okt}}$	[dB]	Oktav-Schallleistungspegel
W	[m]	Abstand Durchlass bis zur Wand			$L_{W-Okt} = L_{WA} + \Delta L$
Υ	[m]	Abstand von der Decke	ΔL	[dB]	relativer Schallleistungspegel zu $L_{_{WA}}$
Н	[m]	Raumhöhe	$\Delta L_{_{R}}$	[dB]	akustische Raumdämpfung
t _y	[°C]	Temperatur nach dem Strahlweg	f	[Hz]	Oktavmittenfrequenz
	$t_{_{Y}} = (\Delta t/$	$\Delta t_{\scriptscriptstyle 0}$) · ($t_{\scriptscriptstyle 0}$ - $t_{\scriptscriptstyle R}$) + $t_{\scriptscriptstyle R}$	NR		Schallleistungsbezogener NR-Grenzwert
t _o	[°C]	Zulufttemperatur	NC		Schallleistungsbezogener NC-Grenzwert

Korrekturwerte: Anschlusskästen mit vom Standardstutzen abweichenden Stutzengrößen, Drosselklappe AUF

Anschlussstutzengröße		DN		100	125	150	160	180	200	224	250	280	300	315	
Anschlusskastengröße	325	$_{L_{WA}}^{\Delta p}$	X +	2,9 4,4	1,6 2,1	1,1 0,5	1,0 0,0	0,9 -0,9	0,8 -1,6	-	-	-	-	-	
Zuluft	400	$_{L_{WA}}^{\Delta p}$	X +	-	2,8 8,2	1.7 4,8	1.5 3,7	1,2 1,7	1,0 0,0	0,9 -1,7	-	-	-	-	
Anschlusskasten K1-DL mit Luftleitblech	500	$_{L_{WA}}^{\Delta p}$	X +	-	-	2,3 7,0	1,9 5,3	1,3 2,5	1,0 0,0	0,8 -2,5	0,6 -4,8	0,5 -7,0	-	-	
	6001)	$\Delta p \ L_{_{WA}}$	X +	-	-	5,4 17,0	4,3 14,7	2,8 10,6	1,9 7,0	1,4 3,4	1,0 0,0	0,8 -3,3	0,7 -5,2	0,6 -6,5	
Anschlusskastengröße	325	$\Delta p \ L_{\scriptscriptstyle WA}$	X +	2,5 6,2	1,5 2,9	1,1 0,7	1,0 0,0	0,9 -1,1	0,8 -1,8	-	-	-	-	-	
Abluft	400	$\Delta p \ L_{_{WA}}$	X +	-	3,4 10,5	1,9 5,9	1,6 4,5	1,2 2,0	1,0 0,0	0,9 -1,8	-	-	-	-	
Anschlusskasten K1-D ohne Luftleitblech	500	$\Delta p \ L_{w_A}$	X +	-	-	2,4 8,3	2,0 6,3	1,3 2,8	1,0 0,0	0,8 -2,7	0,6 -5,0	0,5 -6,9	-	-	
	6001)	$\Delta p \ L_{w_A}$	X +	-	-	5,0 19,0	4,0 16,2	2,7 11,4	1,9 7,4	1,4 3,4	1,0 0,0	0,8 -3,1	0,7 -4,7	0,6 -5,8	
Anschlusskastengröße	325	Δp L_{w_A}	X +	1,0 0,0	-	-	-	-	-	-	-	-	-	-	
Zuluft	400	$\Delta p \ L_{_{WA}}$	X +	1,7 7,5	1,0 0,0	-	-	-	-	-	-	-	-	-	
Anschlusskasten K2-DL mit Luftleitblech	500	$_{L_{WA}}^{\Delta p}$	X +	-	2,5 9,5	1,5 4,3	1,3 2,7	1,0 0,0	-	-	-	-	-	-	
	6001)	$\Delta p \ L_{w_A}$	X +	-	5,1 20,4	2,8 12,9	2,2 10,4	1,6 6,3	1,2 3,1	1,0 0,0	-	-	-	-	
Anschlusskastengröße	325	Δp L _{wA}	X +	1,0 0,0	-	-	-	-	-	-	-	-	-	-	
Abluft	400	$_{L_{WA}}^{\Delta p}$	X +	1,7 6,8	1,0 0,0	-	-	-	-	-	-	-	-	-	
Anschlusskasten K2-D ohne Luftleitblech	500	Δp L _{wA}	X +	-	2,4 9,8	1,4 4,6	1,2 2,9	1,0 0,0	-	-	-	-	-	-	
	6001)	$\Delta p \ L_{w_A}$	X +	-	4,7 21,1	2,6 13,6	2,1 11,2	1,6 6,9	1,2 3,4	1,0 0,0	-	-	-	-	
Anschlusskastengröße	325	$_{L_{WA}}^{\Delta p}$	X +	2,8 5,4	1,5 2,7	1,1 0,7	1,0 0,0	0,9 -1,1	0,8 -2,1	-	-	-	-	-	
Zuluft	400	∆p L _{wa}	X +	-	3,1 6,0	1,8 3,5	1,5 2,6	1,2 1,2	1,0 0,0	0,9 -1,2	-	-	-	-	
Anschlusskasten R1-DL mit Luftleitblech	500	Δp L_{w_A}	X +	-	-	2,4 5,8	1,9 4,4	1,3 2,0	1,0 0,0	0,8 -2,1	0,6 -3,9	0,5 -5,6	-	-	
	600	Δp L _{wa}	X +	-	-	5,6 15,3	4,4 13,2	2,9 9,5	2,0 6,3	1,4 3,0	1,0 0,0	0,8 -2,9	0,7 -4,6	0,6 -5,7	
Anschlusskastengröße	325	Δp L _{wA}	X +	2,9 8,4	1,6 4,3	1,1 1,1	1,0 0,0	0,9 -2,0	0,8 -3,7	-	-	-	-	-	
Abluft	400	Δp L _{wA}	X +	-	3,0 9,7	1,8 5,8	1,6 4,5	1,2 2,1	1,0 0,0	0,8 -2,2	-	-	-	-	
Anschlusskasten R1-D ohne Luftleitblech	500	Δp L _{wA}	X +	-	-	2,5 7,6	2,0 5,9	1,4 2,7	1,0 0,0	0,7 -2,9	0,6 -5,5	0,5 -8,2	-	-	
	600	$\Delta p \ L_{w_A}$	X +	-	-	6,3 17,3	4,9 15,0	3,1 10,9	2,1 7,3	1,4 3,5	1,0 0,0	0,7 -3,5	0,6 -5,6	0,6 -7,1	
		1													

Die Korrekturwerte sind Mittelwerte für den gesamten Volumenstrombereich, ansonsten siehe WILDEBOER - Dimensionierungssoftware.

¹) Anschlusskastengröße 600 ist für Dralldurchlässe der Nenngrößen 600 und 625 (Lochbild 600).

Korrekturwerte: Anschlusskästen K1, K2 und R1 mit Drosselklappe ZU

Anschlussstutzengröße		DN		100	125	150	160	180	200	224	250	280	300	315
Anschlusskastengröße	325	Δp L _{wa}	X +	3,6 15,7	3,0 8,2	2,5 3,5	2,2 2,3	1,8 1,2	1,4 1,8	-	-	-	-	-
Zuluft	400	Δp L _{wa}	X +	-	4,0 13,9	3,1 10,1	2,8 8,7	2,3 6,3	2,0 4,2	1,7 2,2	-	-	-	-
Anschlusskasten K1-DL mit Luftleitblech	500	Δp L _{wa}	X +	-	-	4,1 14,9	3,9 13,8	3,5 11,7	3,2 9,8	2,8 7,9	2,5 6,1	2,1 4,6	-	-
	6001)	Δp L _{wa}	X +	-	-	4,5 16,3	4,4 15,8	4,3 14,8	4,1 13,7	3,8 12,2	3,4 10,6	2,9 8,6	2,6 7,2	2,3 6,1
Anschlusskastengröße	325	Δp L _{wa}	X +	3,0 13,4	2,5 8,5	2,0 5,0	1,8 4,0	1,6 2,7	1,4 2,3	-	-	-	-	-
Abluft	400	Δp L _{wa}	X +	-	2,7 10,6	2,6 10,0	2,6 9,5	2,4 8,3	2,2 6,5	1,7 3,9	-	-	-	-
Anschlusskasten K1-D ohne Luftleitblech	500	Δp L _{wa}	X +	-	-	3,0 12,7	3,0 12,0	2,8 10,6	2,6 9,4	2,4 8,2	2,2 7,2	1,9 6,4	-	-
	6001)	Δp L _{wa}	X +	-	-	3,5 14,0	3,4 13,8	3,3 13,5	3,2 13,0	3,1 12,4	2,9 11,5	2,6 10,4	2,3 9,6	2,1 8,9
Anschlusskastengröße	325	Δp L _{wA}	X +	3,0 9,1	-	-	-	-	-	-	-			-
Zuluft	400	Δp L _{wa}	X +	4,2 13,8	4,0 12,7	-	-	-	-	-	-	-	-	-
Anschlusskasten K2-DL mit Luftleitblech	500	Δp L _{wa}	X +	-	4,8 16,7	3,8 12,3	3,4 10,5	2,6 7,1	-	-	-	-	-	-
	6001)	∆p L _{wa}	X +	-	5,1 16,6	4,2 12,8	3,8 11,6	3,3 9,4	2,8 7,7	2,3 6,4	-	-	-	-
Anschlusskastengröße	325	Δp L _{wA}	X +	2,6 9,9	-	-	-	-	-	-				-
Abluft	400	Δp L _{wa}	X +	3,5 12,8	3,2 12,5	-	-	-	-	-	-	-	-	-
Anschlusskasten K2-D ohne Luftleitblech	500	Δp L _{wa}	X +	-	4,7 16,9	3,6 12,6	3,1 10,9	2,2 7,5	-	-	-	-	-	-
	6001)	Δp L _{wa}	X +	-	4,4 14,9	3,5 12,4	3,2 11,6	2,7 10,0	2,2 8,8	1,9 7,6	-	-	-	-
Anschlusskastengröße	325	Δp L _{wa}	X +	3,5 16,6	3,3 11,3	2,8 7,1	2,6 5,7	2,1 3,4	1,5 1,7	-	-	-	-	-
Zuluft	400	Δp L _{wa}	X +	-	5,1 19,4	3,8 10,2	3,4 7,5	2,8 3,7	2,3 2,0	2,1 2,9	-	-	-	-
Anschlusskasten R1-DL mit Luftleitblech	500	Δp L _{wa}	X +	-	-	4,5 18,2	4,5 17,1	4,5 14,9	4,3 12,7	4,0 10,1	3,3 7,2	2,3 3,9	-	-
	600	Δp L _{wa}	X +	-	-	5,1 20,3	5,0 19,7	4,9 18,4	4,7 17,0	4,4 15,0	4,0 12,7	3,5 9,6	3,2 7,3	2,9 5,5
Anschlusskastengröße	325	Δp L _{wa}	X +	2,7 12,0	2,5 8,3	2,2 5,5	2,1 4,5	1,8 3,1	1,4 2,1	-	-	-	-	-
Abluft	400	Δp L _{wa}	X +	-	3,8 18,9	3,2 13,7	3,0 12,0	2,5 8,9	2,1 6,4	1,6 4,2	-	-	-	-
Anschlusskasten R1-D bhne Luftleitblech	500	Δp L _{wa}	X +	-	-	2,9 13,8	3,0 13,2	3,1 11,9	3,0 10,8	2,9 9,4	2,5 8,0	1,9 6,4	-	-
	600	Δp L _{wa}	х	_	_	3,4 17,2	3,4 16,8	3,4 16,0	3,4 15,1	3,3 13,9	3,1 12,5	2,8 10,9	2,5 9,7	2,2 8,7

Die Korrekturwerte sind Mittelwerte für den gesamten Volumenstrombereich, ansonsten siehe WILDEBOER - Dimensionierungssoftware.

¹⁾ Anschlusskastengröße 600 ist für Dralldurchlässe der Nenngrößen 600 und 625 (Lochbild 600).

Korrekturwerte, Grenzkurven, Raumakustik, Anwendungsbereich

Korrekturwerte: Anschlusskästen K3 und R3 mit Drosselklappe ZU

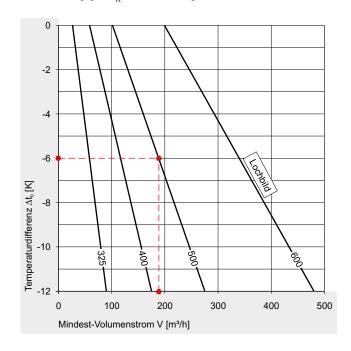
Anschluss-	l			K	3	R3		
kastengröße	DN			Zuluft	Abluft	Zuluft	Abluft	
325	160	Δ p :	х	2,8	2,1	2,3	2,0	
		L _{wa} ·	+	7,3	8,7	4,7	9,7	
400	200	Δp	х	2,6	2,0	2,4	2,0	
		L _{wa} ·	+	5,9	7,7	4,7	9,7	
500	200	Δp	х	4,0	2,5	3,7	2,5	
		L _{wa} ·	+	17,2	11,0	14,4	11,7	
6001)	250	Δp	х	3,6	2,6	3,5	2,5	
		L _{wa} ·	+	16,2	11,6	16,0	13,1	

Die Korrekturwerte sind Mittelwerte für den gesamten Volumenstrombereich, ansonsten siehe WILDEBOER - Dimensionierungssoftware.

Akustische Grenzwerte NR, NC

Die in den Nomogrammen angegebenen NR-Grenzwerte nach ISO 1996 sind aus Oktavschallleistungspegeln berechnet und somit nicht auf Schalldruckpegel bezogen. Die Raumdämpfung ΔL_R ist nicht berücksichtigt, sie hängt individuell von der Raumakustik ab. NC-Grenzwerte sind wie NR-Grenzwerte auf den Schalldruckpegel zu beziehen. Im raumlufttechnischen Anwendungsbereich darf etwa NC = NR - 4 angesetzt werden.

Raumdämpfung ΔL_{p}


In den Nomogrammen sind Einzel-Schallleistungspegel angegeben. Zur akustischen Beurteilung ist die Summe aller Schalldruckpegel heranzuziehen, sie weicht um die Raumdämpfung von der Summe der Einzel-Schallleistungspegel ab: $L_{_{D}}$, $L_{_{DA}} = L_{_{W}}$, $L_{_{WA}} + \Delta L_{_{R}}$. In raumlufttechnischen Anlagen kann überschlägig $\Delta L_{_{R}} = -8$ dB angesetzt werden.

Anwendungsbereich

Für eine optimale Zuluftverteilung in Räumen mit etwa 2,5 bis 4 m Höhe sind in Decken bündig eingebaute Anschlusskästen erforderlich. Die DT Dralldurchlässe verteilen die Zuluft dann radial unterhalb der Decken. Durch Raumwände und Gegenströmungen wird die Luft in den Aufenthaltsbereich gelenkt. Im Kühlfall, bei gegebener Temperaturdifferenz $\Delta t_{_{0}}$ zwischen Zuluft und Raumluft, sollten die angegebenen Mindest-Volumenströme eingehalten werden. Ausgeschlossen ist dann ein partieller Kaltlufteinfall als Strähnenbildung mit entsprechenden Zugerscheinungen im Aufenthaltsbereich, der ansonsten bei der Einleitung kalter Luft in einen Raum mit höherer Temperatur auftreten kann.

Allgemein sollten Mindest-Volumenströme zur Gewährleistung einer minimalen Raumdurchspülung immer gewährleistet sein, auch im Heizbetrieb und unter isothermen Bedingungen mit $\Delta t_a = 0$ K.

Bei frei hängendem Einbau treten thermisch bedingte Ablenkungen auf. Insofern ist das Eindringen der Zuluft in den Aufenthaltsbereich mit veränderten Strömungsgeschwindigkeiten zu erwarten. Behaglichkeitskriterien können daher bei dieser Einbauart nur begrenzt erfüllt werden.

Beispiel (⇒ siehe Seite 7)

DTQ0 - 500 - 500 - K1 - 200 - DL

Raumtemperatur	t _R	=	22	°C
Zulufttemperatur	t _o	=	16	°C
Temperaturdifferenz	$\Delta t_{_{0}}$	=	- 6	K
Mindest-Volumenstrom (Zuluft)	V	=	190	m³/h

HINWEIS

Die temperaturabhängig angegebenen **Mindest-Volumenströme** müssen bei Auslegung mittels Nomogramm oder Tabellen zusätzlich beachtet werden! Mit der WILDEBOER - Dimensionierungssoftware kann eine Berücksichtigung automatisch erfolgen!

¹⁾ Anschlusskastengröße 600 ist für Dralldurchlässe der Nenngrößen 600 und 625 (Lochbild 600).

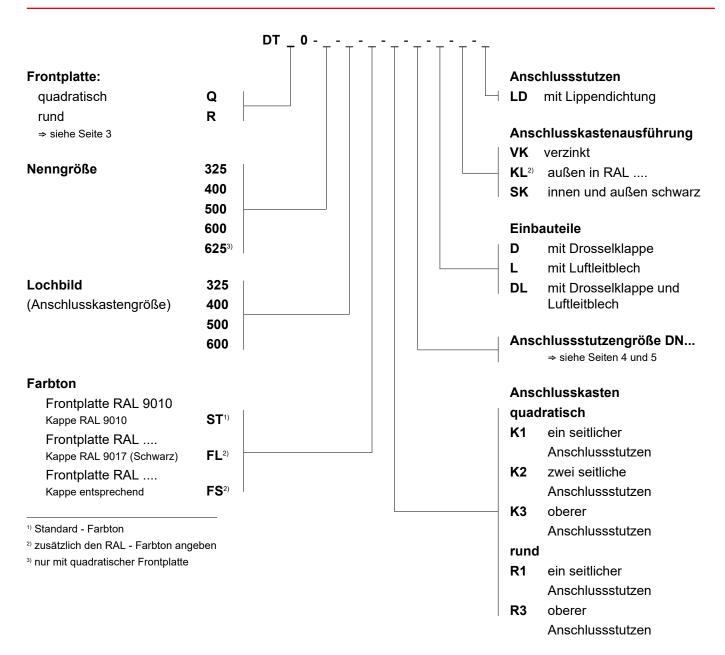
Schnellauswahl

Volumenstrom [m³/h] / Druckverlust [Pa]

Anschlussstutzengröße DN	۱				Schallleis	tungspegel	[dB(A)]		
Anschlusskastengröße —	$\overline{}$		20	25	30	35	40	45	50
	325	100	100 / 13	120 / 19	150 / 30	180 / 43	220 / 65	270 / 98	330 / 146
		160	120 / 7	140 / 9	170 / 14	210 / 21	260 / 32	320 / 48	390 / 71
Zuluft		200	130 / 7	150 / 9	190 / 14	230 / 20	280 / 30	340 / 44	410 / 65
DTQ0	400	125	140 / 9	180 / 16	210 / 21	260 / 33	320 / 49	390 / 73	480 / 111
		200	200 / 7	240 / 10	300 / 15	360 / 22	440 / 33	540 / 49	660 / 74
mit		224	220 / 7	260 / 10	320 / 15	390 / 22	470 / 32	570 / 48	700 / 72
Anschlusskasten	500	450	040 / 0	050 / 40	240 / 20	200 / 24	400 / 45	FC0 / CC	600 / 00
K1-DL	500	150 200	210 / 9 270 / 7	250 / 13 330 / 10	310 / 20 410 / 15	380 / 31 500 / 23	460 / 45 600 / 33	560 / 66 740 / 50	680 / 98 900 / 73
mit Luftleitblech		280	370 / 7	450 / 10	540 / 14	660 / 21	800 / 33	960 / 45	900 / 73 1170 / 67
Drosselklappe AUF		200	3/0//	430 / 10	340 / 14		000 / 3 1	900 / 43	
	6001)	150	220 / 9	270 / 14	320 / 19	400 / 30	480 / 43	590 / 65	720 / 97
		250	430 / 6	520 / 9	630 / 14	770 / 21	930 / 30	1130 / 44	1380 / 66
Zusätzlich		315	560 / 7	680 / 10	820 / 14	990 / 21	1200 / 30	1450 / 44	1760 / 65
Mindest-Volumenströme beachten! ⇒ siehe Seite 16									
	325	100	80 / 9	100 / 14	130 / 24	150 / 32	190 / 52	230 / 76	290 / 121
		160	110 / 7	130 / 10	160 / 15	200 / 23	240 / 33	300 / 51	360 / 74
Abluft		200	120 / 7	150 / 11	180 / 15	210 / 21	260 / 32	320 / 48	380 / 68
DTQ0	400	125	120 / 9	150 / 14	180 / 21	220 / 31	270 / 47	330 / 70	400 / 103
mit		200	190 / 7	230 / 10	270 / 14	330 / 20	410 / 32	490 / 45	600 / 68
Anschlusskasten		224	200 / 6	250 / 10	300 / 14	360 / 21	440 / 31	530 / 45	640 / 66
	500	150	180 / 9	210 / 12	260 / 18	320 / 28	390 / 41	480 / 63	580 / 91
K1-D		200	250 / 7	300 / 10	370 / 15	440 / 22	540 / 32	650 / 47	790 / 69
ohne Luftleitblech		280	340 / 7	400 / 9	490 / 14	590 / 20	710 / 29	850 / 42	1020 / 60
Drosselklappe AUF	600¹)	150	190 / 8	230 / 12	280 / 17	340 / 26	410 / 37	510 / 58	620 / 86
	000	250	400 / 7	480 / 10	580 / 15	700 / 22	850 / 32	1020 / 46	1230 / 67
		315	510 / 7	610 / 10	730 / 14	880 / 21	1050 / 32	1260 / 43	1510 / 62
		0.10	3.07.1	310710	.00 / 14	300 / 21	.555 / 50	.2007 10	.510/02

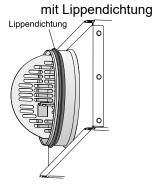
Standardstutzen der Anschlusskästen K1 sind fettgedruckt.

DT Dralldurchlässe


- erfüllen die Hygiene-Anforderungen entsprechend VDI 6022-1, VDI 3803-1, DIN 1946-4 und DIN EN 13779.
- sind mikrobiell beständig, fördern somit kein Wachstum von Mikroorganismen (Pilze, Bakterien). Infektionsgefahren für Menschen werden gemindert, ebenso der entsprechende Aufwand zur Reinigung und Desinfektion!
- sind **reinigungs- und desinfektionsmittelbeständig** und für Krankenhäuser und vergleichbare Einrichtungen geeignet!

¹⁾ Anschlusskastengröße 600 ist für Dralldurchlässe der Nenngrößen 600 und 625 (Lochbild 600).

Bestellangaben



Beispiel: DTQ0 - 500 - 500 - ST - K1 - 200 - DL - VK - LD

HINWEIS zu Farbtönen

Farbabweichungen sind aus technischen Gründen nie ganz zu vermeiden, dies betrifft besonders die Farbtöne RAL 9006 (Weißaluminium) und RAL 9007 (Graualuminium). In besonderen Fällen ist daher eine spezielle Farbabstimmung ratsam, auch in Verbindung mit umgebenden Farbtönen, beispielsweise Unterdecken!

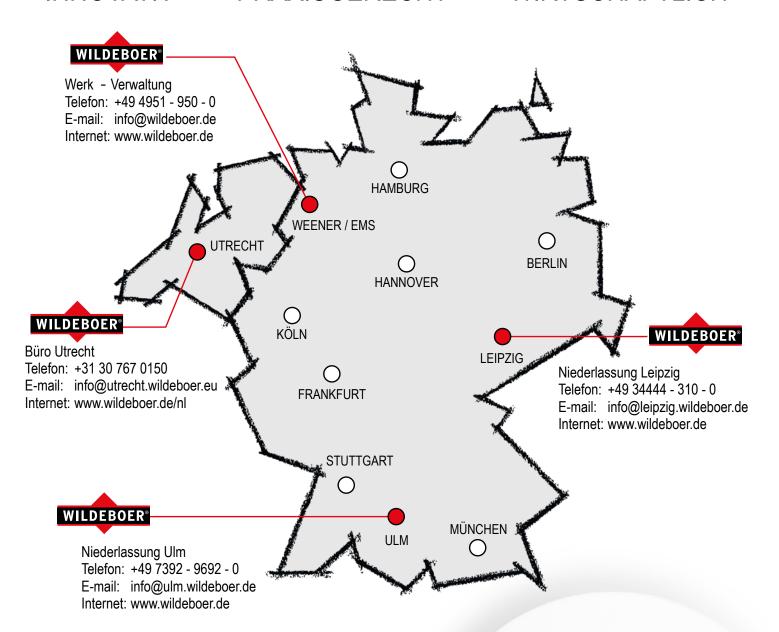
Anschlussstutzen

Ausschreibungstext

DT Dralldurchlass für Zuluft und Abluft. Für konstante und variable Volumenströme. Mit zentrischem progressiv verdrillten Schaufelprofil für große Volumenströme bei geringen Strömungsgeräuschen. Mit hoher Induktion zum Abbau der Strömungsgeschwindigkeiten und der Temperaturdifferenzen im Heizfall und bei Raumkühlung bis -12 K durch radiale, achssymmetrische Luftverteilung. Quadratische / runde Frontplatte aus verzinktem Stahlblech mit feststehenden, radial ausgerichteten und progressiv verdrillten Luftleitlamellen und verdeckter Zentralbefestigung. Mit unempfindlicher, farbtonbeständiger, antistatischer Polyester-Beschichtung, glatt - glänzend im Farbton RAL 9010 (Weiß) oder im RAL - Sonderfarbton.

Konformitätszertifikat als Erfüllungsnachweis der Hygieneanforderungen gemäß VDI 6022-1, VDI 3803-1, DIN 1946-4 und DIN EN 13779.

Anschlusskasten mit Zentralbefestigung, aus verzinktem Stahlblech mit Bohrungen für Abhängungen mit


- speziellem Luftleitblech, insbesondere für Zuluft zur optimalen Luftverteilung mit geringen Strömungsgeräuschen
- innen und außen schwarzer Pulverbeschichtung
- außen im RAL Sonderfarbton
- einem seitlichen Anschlussstutzen
- zwei seitlichen Anschlussstutzen
- oberem Anschlussstutzen
- Lippendichtung (en)
- Drosselklappe zur Volumenstromeinstellung ohne Demontage des Luftdurchlasses

Einbau in geschlossene Deckensysteme, Rasterdecken und frei hängend.

• • • • • • • •	Stück			
	Volumenstrom:		m³/h	
	Druckverlust:		Pa	
	Schallleistungspegel:		dB (A)	
	Fabrikat:	WILDEBOE	R [®]	
	Typ:	DT		
	Nenngröße:			
	Lochbild:			
	Anschlussstutzengröße DN:			
	Farbton Dralldurchlass:	RAL		
	Farbton Anschlusskasten:	RAL		
	komplett mit Befestigungen		liefern:	
			montieren:	

Nicht fettgedruckte Texte nach Bedarf auswählen!

INNOVATIV • PRAXISGERECHT • WIRTSCHAFTLICH

NUTZEN SIE UNSERE STÄRKEN!

